
ADOBE SYSTEMS INCORPORATED

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000
http://partners.adobe.com

b bc

September 2003

XMP Custom Panels

Copyright 2003 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a "PostScript printing device,” "PostScript display device,” or similar item refers to a printing
device, display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated and not
to devices or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. UNIX is a registered trademark of The Open Group.
All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties
of merchantability, fitness for particular purposes, and noninfringement of third party rights.

XMP Custom Panels 3

Contents

XMP Custom File Info Panels . 5

Introduction . 5

Custom Panel Files . 5

Custom Panel Description File Format . 5

File Locations . 6

Custom Panel Description File Contents . 6

Custom Panel Widget Types . 7

Container Widgets . 7

Leaf Widgets . 8

Widget Variables . 11

Widget Variable Key-Value Pairs . 11

Scoping for Linked Variable Values . 12

General Widget Variables . 13

Container Widget Variables. 15

Dynamic-Value Leaf Widget Variables . 19

Type-Specific Leaf Widget Variables . 20

ZString . 25

The ZString Format . 25

ZString Examples . 26

Localization Dictionary Files . 26

Localization Dictionary File Format . 27

Matching ZStrings for Localization . 28

Troubleshooting a Custom Panel . 28

Additional Documentation. 29

Sample Custom Panels . 31

Overview of Samples . 31

Sample Custom Panel Description Files . 31

Example 1: All Widgets . 31

Example 2: Document Description Metadata . 32

ZString Escape Sequences . 37

Backslash Escape Sequences . 37

Contents

4 XMP Custom Panels

Hat Escape Sequences . 37

ISO-based Escape Sequences . 38

XMP Custom Panels 5

XMP Custom File Info Panels

Introduction

The custom File Info panel for XMP metadata allows you to define, create, and manage
custom metadata properties using standard Adobe applications. You can do this by
creating a Custom Panel Description file, as described in this document, and placing it in a
common location referenced by Adobe applications that support this feature. You can also
supply localization dictionary files to localize the contents of your Custom Panel
Description files.

The resulting custom dialog panel is seen by users when they select the File Info menu
option.

The File Info panel allows you to support paths to metadata properties which are not
defined in default or other standard XMP schemas, but are needed for your application,
company, or industry. By using XMP for that metadata, you take advantage of the potential
of XMP for interchange and participation in asset management systems, while providing
the ability to use standard Adobe applications to manage it.

Custom Panel Files

There are two types of files used in creating a File Info custom panel:

● Panel description files

These files directly describe and create the custom panels. See “Custom Panel
Description File Format” on page 5 for a complete description.

● Localization dictionary files

These optional files localize the panel description file contents to other languages at run
time. See “Localization Dictionary Files” on page 26 for a complete description.

Adobe applications that support this feature look for these files in the prescribed locations,
and add your custom panel or panels to their File Info dialogs in the language of the dialog.

Custom Panel Description File Format

The panel description file is a 7-bit ASCII file in a simple form of XML, containing the user-
interface definitions for a panel. See Sample Custom Panels for example of the format. One
description file describes exactly one custom file panel; however, you can have as many
custom panel files as you wish.

The following file creation tools are recommended:

● On Mac OS 9 use SimpleText or a free third-party text editor such as MPW Shell.

XMP Custom File Info Panels
Introduction

6 XMP Custom Panels

● On Mac OS X use TextEdit and make sure you save the file as type “Plain Text,” not RTF.

● On Windows® use Notepad, and be sure to save the file as type “Plain Text.”

Save the file with extension .txt or .xmp.

File Locations

The panel description and localization dictionary files must reside in the following locations
for proper use:

Each time an Adobe application opens the File Info dialog, it scans all the files in these
directories and appends them to the file list. If more than one of the description files has
the same name, the first one found is added, and others are ignored.

Changes to the contents of the directories do not require you to reload an application;
changes are automatically reflected in the dialog the next time it is opened.

Custom Panel Description File Contents

Custom Panel descriptions define widgets, which generally represent visual elements
displayed on the screen. Custom Panel description files contain only widget definitions;
they cannot contain comments.

Panel descriptions consist of nested widget definitions. Widgets that contain other widgets
are called containers; these do not always have a visual representation. Bottom-level
widget definitions are called leaves; these are generally UI controls, such as text boxes and
pop-up menus. The nesting of widgets is called the scoping.

● A leaf widget has the following format:
widget_type (widget_variables);

● A container widget has the following format:
widget_type (widget_variables)

{
 ...nested widgets...
}

Widget types are defined to represent different kinds of containers and controls. The
widget types are listed and described in “Custom Panel Widget Types” on page 7.

Mac OS X {Root Volume}/Library/Application Support/Adobe/XMP
/Custom File Info Panels

{Home Directory}/Library/Application/Adobe/XMP
/Custom File Info Panels

Windows \Program Files\Common Files\Adobe\XMP
\Custom File Info Panels

\Documents and Settings\<user>\Application Data\Adobe\XMP
\Custom File Info Panels

XMP Custom Panels 7

XMP Custom File Info Panels
Custom Panel Widget Types

All widgets can have variables associated with them; a variable consists of a key-value pair
(see “Widget Variable Key-Value Pairs” on page 11). The variables affect the layout of the
custom panel, the behavior of the widget, and the connection between the controls and
XMP properties. All of the variables are described in “Widget Variables” on page 11.

● The values of the widget variables can depend on the scope—that is, the nesting level
at which they are specified. See “Scoping for Linked Variable Values” on page 12.

● Widgets contain ZStrings, an Adobe-defined type, to specify displayed text; see
“ZString” on page 25. This allows displayed text to be translated to other languages
using localization dictionaries.

Strings and ZStrings are enclosed in double quotes in the XMP standard, but must be
enclosed in single quotes in the widget description language. For example, the following
shows how double quotes are used in the XMP headers for the description file, but single
quotes are used in the widget descriptions themselves:

<?xml version="1.0">
<!DOCTYPE panel SYSTEM "http://ns.adobe.com/custompanels/1.0">
<panel title="$$$/CustomPanels/Acro/PanelName=Test All Widgets"

version="1" type="custom_panel">
...
slider(name:'$$$/CustomPanels/Widgets/opt2=Slider',

horizontal: align_fill, height : 10, default_value:22,
min_value:0, max_value:100, num_tick_marks:6,
xmp_path: 'SliderValue', pointing:slider_point_right);

...

Custom Panel Widget Types

Some widget types are containers, and others are leaves. Many widgets share certain
variables; in addition, some types have custom variables. Both common and custom
variables are described in detail in “Widget Variables” on page 11.

To have a dynamic value, a widget must be bound to an XMP property; see “Dynamic Value
Variables” on page 19.

Container Widgets

Container widgets have no values or custom variables. The variables that apply to them are
described in “Widget Variables” on page 11.

Widget type Description

group A simple container, with no visual representation. It exists to organize its
widget children. Use nested groups to organize the alignments and
layouts of the contained leaf widgets.

XMP Custom File Info Panels
Custom Panel Widget Types

8 XMP Custom Panels

Leaf Widgets

The following table summarizes the leaf widget types. The XMP value type is the expected
type of an XMP property bound to such a widget. The custom variables are described in
“Type-Specific Leaf Widget Variables” on page 20.

cluster A container whose children are enclosed in a graphic box, with a space
left for the name of the box in the upper-left corner.
● Specify a margin of at least 15 to allow proper drawing of the graphic

box.
● Specify a margin_top of at least 25 if the cluster has a name value

set.

Widget type Description Custom variables

edit_text
(dynamic-value)
XMP value type: string

A text editing field control.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

password
seven_bit_ascii
max_chars
restriction
v_scroller
For details, see “edit_text
variables” on page 20

edit_number
(fixed-text or dynamic-value)
XMP value type: string

A numeric text editing field control.
Numeric values are formatted. This
subclass of edit_text inherits all
the edit_text custom properties
and behavior.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

format
format_addin
min_value
max_value
precision
For details, see
“edit_number variables”
on page 21

static_text
(fixed-text or dynamic-value)
XMP value type: string

A single-line, non-editable text field
control suitable for text display or to
label another field.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

truncate
For details, see
“static_text variables” on
page 23

XMP Custom Panels 9

XMP Custom File Info Panels
Custom Panel Widget Types

static_text_enum
(fixed-text or dynamic-value)
XMP value type: string

A multi-line non-editable text field
control. This subclass of
static_text inherits all the
static_text behavior.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

items
For details, see
“static_text_enum
variables” on page 23

cat_container_edit_text
XMP value type: none

An editable text field bound to an
XMP array of type bag or sequence.
Each item in the array of XMP data is
shown, with items separated by
semicolons or commas (if
preserve_commas is false).
When the user clicks OK to close the
dialog, the values are stored in
sequence in the XMP array.

preserve_commas
For details, see
“cat_container_edit_text
variables” on page 24

popup
(fixed-text or dynamic-value)
XMP value type: integer

A pop-up menu control.
The value of the selected popup
menu item is stored in XMP when
the File Info dialog is closed.
Setting the font parameter for a
popup does not affect the font of the
menu items, only the font of the
popup menu title.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

items
no_checks
For details, see “popup
variables” on page 20

Widget type Description Custom variables

XMP Custom File Info Panels
Custom Panel Widget Types

10 XMP Custom Panels

mru_popup
(dynamic-value)
XMP value type: none

Most-recently-used popup menu,
bound to a specific XMP property.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply the
dynamic values.
If this widget is in a custom panel,
when the user clicks OK to close the
dialog, the application saves the 10
most recently used values for the
bound XMP property. These values
are then available in this popup
menu next time the dialog is
opened.
Choosing an item from the MRU
menu changes the bound property’s
value; any other widgets bound that
property are also updated.

N O T E : On Mac OS, set the property
no_checks to false to
ensure the proper appearance.

container_type
For details, see
“mru_popup variables”
on page 24

check_box
(fixed-text or dynamic-value)
XMP value type: boolean

A check box control. The value of a
dynamic-value check box is true or
false, reflecting whether it is
checked.
The label (name variable) for the
check box is a localizable ZString.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

initial_value
For details, see
“check_box variables” on
page 23

slider
(dynamic-value)
XMP value type: integer

A slider control.
You must provide name,
xmp_namespace and xmp_path
values for this widget to supply a
dynamic value.

min_value
max_value
num_tick_marks
pointing
For details, see “slider
variables” on page 23

Widget type Description Custom variables

XMP Custom Panels 11

XMP Custom File Info Panels
Widget Variables

Widget Variables

WIdget properties are defined by special variables that control various aspects of the
appearance and layout of the panel you are creating. Some variables can be used for all
widgets, some apply only to container or leaf widgets, and some are specific to a particular
type of widget.

Widget Variable Key-Value Pairs

Widget variables have two parts: the key and the value:

● The key is the identifier or name of the variable. The key is composed of 7-bit ASCII
alphanumeric text, and cannot have any whitespace in it.

● The value has one of the following value types:

separator
XMP value type: none

A simple horizontal rule.
Set the horizontal variable to
align_fill to make the separator
adjust itself to the width of your
custom panel.

none

picture
XMP value type: none

An icon or image. none

integer A signed 32-bit number, with no delimiting characters. Negative values
are not allowed.

string A 7-bit ASCII string, enclosed in single quotation marks.

zstring An Adobe-defined ZString, enclosed in single quotation marks. See
“ZString” on page 25 for details of the format.

enumeration A predefined set of constants, or named values, with no delimiting
characters. Enumerated values are listed in the variable descriptions
below. You cannot define custom enumerations or customize existing
enumerated variable values.

boolean One of the predefined values true or false.

Widget type Description Custom variables

XMP Custom File Info Panels
Widget Variables

12 XMP Custom Panels

Scoping for Linked Variable Values

Variables whose values are linked to other variables change value based on the scope they
are in. This can be a bit confusing, so here is an example:

outer_scope(myvar: 42, name: '$$$/Demo/Greeting=Hello!')
{
widget1(width: myvar);
inner_scope(myvar: 21)

{
widget2(width: myvar);
widget3(myvar: 11, width: myvar);
widget4(width: 6);
}

widget5(width: myvar);
}

N O T E : These are not valid widget types, but are used only for illustration.

In this example, the outer_scope widget has two variable, myvar and name. The initial
value of myvar is 42.

● In the first leaf widget, widget1, the value of width is assigned the value of myvar,
which at this point is 42, so the first widget is 42 pixels wide:

The outer container contains a nested container, inner_scope, which redefines the
variable myvar, setting it to the value 21.

N O T E : The myvar defined by inner_scope is a new variable with the same name; it
does no overwrite the myvar defined in outer_scope.

● The second leaf widget, widget2, is within the scope of inner_scope. It also assigns
the value of width to the value of myvar. Within this scope, the value of myvar is 21,
so the second widget is 21 pixels wide.

● The third leaf widget, widget3, defines its own myvar, gives it a value (11), and
assigns width to myvar. The scope of this definition is the widget itself, so the third
widget is 11 pixels wide. Because this is not a container widget, this scope affects only
this widget, and the new myvar, with a value of 11, does not propogate any further.

another
variable

The key of another variable. The value of this variable is linked to that of
the variable specified as the value. The variable you are linking to must be
previously defined in a containing scope. See Scoping for Linked Variable
Values below.
The key name of the linked variable is not delimited by any special
characters. Note that a variable name used as a value looks like an
enumerated value—be careful that you do not skip over a predefined
enumeration by declaring a variable whose key is identical to the possible
enumeration value.

XMP Custom Panels 13

XMP Custom File Info Panels
Widget Variables

● The fourth leaf widget, widget4, sets the width directly, rather than linking it to
myvar. The fourth widget is 6 pixels wide.

At this point, inner_scope closes; the myvar defined in the inner_scope can no
longer be referenced.

● The fifth widget, widget5, also assigns the value of width to the value of myvar. This
widget is defined outside the scope of inner_scope, but is still within
outer_scope. The myvar defined in outer_scope still has the value 42, so the fifth
widget is 42 pixels wide.

The resulting widgets have the following width values, all from their different sources:

widget1: 42 pixels wide
widget2: 21 pixels wide
widget3: 11 pixels wide
widget4: 6 pixels wide
widget5: 42 pixels wide

General Widget Variables

These variables can apply to either container or leaf widgets. Some apply only to text
widgets.

Variable Description

height Type: integer (default 0)
The minimum height in pixels of the container or widget. The actual
height depends on the horizontal and child_horizontal
values as well. A container is always large enough to accomodate its
contained widgets.

width Type: integer (default 0)
The minimum width in pixels of the container or widget. The actual
width depends on the vertical and child_vertical values as
well. A container is always large enough to accomodate its contained
widgets.

horizontal Type: enumeration
align_left (default)
align_center
align_right
align_fill

The horizontal alignment of a container within the panel, or of a widget
within its container, restricted to the area the container has designated
for it. The align_fill value adjusts a widget’s width to fill the
allowed area.
This value, if set, overrides the container’s child_horizontal value.
See also Widget Alignment Notes below.

XMP Custom File Info Panels
Widget Variables

14 XMP Custom Panels

vertical Type: enumeration
align_top
align_center (default)
align_bottom
align_fill

The vertical alignment of a container within the panel, or of a widget
within its container, restricted to the area the container has designated
for it. The align_fill value adjusts a widget’s height to fill the
allowed area.
This value, if set, overrides the container’s child_vertical value.
See also Widget Alignment Notes below.

name Type: ZString
For fixed-text widgets such as static_text or cluster, this value
labels the widget.

N O T E : Applies only to fixed-text widgets. Do not use this variable to
change the value or text of the widget at run time. Use
xmp_namespace and xmp_path to provide dynamic values.

font Type: enumeration
font_small
font_small_right
font_big (default)
font_big_right

Applies only to text widgets. Specifies the style (size, weight, and right-
left alignment) of the displayed text.
See also Text Alignment Notes below.

locked Type: boolean or the value read_only_aware
Optional. Default is false.
When true, the widget is dimmed to indicate that it is read-only. For
an editable text control, it is not editable, but the user can still select
and copy its contents.
When read_only_aware, the widget is dimmed only when the
application’s ReadOnly flag is set.

Variable Description

XMP Custom Panels 15

XMP Custom File Info Panels
Widget Variables

Widget Alignment Notes

● A panel with that uses the various horizontal and vertical alignments might look like
this:

● The align_fill value for horizontal or vertical adjusts the widget’s width or
height to fill the allowed area. For example, if a widget is 100 pixels wide, and its
container is 150 pixels wide (and uses “placement: place_column”), setting
horizontal: align_fill makes the child widget’s width grow to 150 pixels.

Text Alignment Notes

● To maintain colon alignment across multiple labels of text, use font alignment,
(font:font_small_right or font:font_small_bold_right), rather than
setting horizontal:align_right for the widget.

● If colon alignment is not desired, try setting label to false.

● To center text, you must set horizontal:align_center, as there is no centering
value for font.

Container Widget Variables

These variables apply only to container widgets.

Variable Description

child_horizontal Type: enumeration
align_left (default)
align_center
align_right
align_fill

The horizontal alignment of all children within the container
that do not have an explicit horizontal value set.
The align_fill value adjusts the horizontal space between
children so that they fill the allowed area.

XMP Custom File Info Panels
Widget Variables

16 XMP Custom Panels

child_vertical Type: enumeration
align_top
align_center (default)
align_bottom
align_fill

The vertical alignment of all children within the container that
do not have an explicit vertical value set.
The align_fill value adjusts the vertical space between
children so that they fill the allowed area.

margin Type: integer (default 0)
Margins are the padding associated with a given container. A
container’s children fit within the bounds of the margin
padding and never encroach upon the margin:

The margin value applies to all the margins for a given
container (top, left, right and bottom). However, if
margin_width is present it overrides margin for the left
and right margin values. Further, if margin_left,
margin_right, margin_top, margin_bottom is
defined, it overrides both margin and margin_width in
the given direction.

Variable Description

left m argin

top m argin

right m argin

bottom m argin

container
item

child
item

child
itemchild

item

height

width

XMP Custom Panels 17

XMP Custom File Info Panels
Widget Variables

Container Size and Placement Notes

● The size of a container is not explicitly set in the Custom File Description file, but is
calculated based on the margins and the widths, heights, and spacing of the children of
the container. You can set the width or height of a container to the minimum
dimension for that container, but it is made larger if needed.

placement Type: enumeration
place_column (default)
place_row

Controls how the children of a container are laid out with
respect to one another.
● place_row places the children of a container along a

single row.
● place_column places the children in a column.

The order of the children on placement is first-to-last in the
definition, left-to-right for rows or top-to-bottom for columns.
See also Container Size and Placement Notes below.

reverse Type: The value rtl_aware
Optional. If supplied, items are automatically realigned for left-
to-right languages; that is the positions are reversed
horizontally.

spacing Type: integer (default 0) or enumeration
gSpace (10 on Mac OS, 9 on Windows)
gMediumSpace (10 on Mac OS, 8 on Windows)
gLargeSpace (15 on Mac OS, 15 on Windows)

The distance in pixels between children of this container. This
does not affect the distance from the top of the container to
the first child, nor the distance from the last child to the
bottom of the container—those are set by the margin values.

Variable Description

XMP Custom File Info Panels
Widget Variables

18 XMP Custom Panels

● The placement value lays out the children of a container as a row or column. For
example:

To make multiple columns of widgets line up in a row with each other, you must nest
the containers. For example:
group(placement: place_row)
{
group(placement: place_column)
{
...column of widgets 1-3 ...
}

group(placement: place_column)
{
...column of widgets 4-6...
}

}

w 2w 1 w 3

w 1

w 2

w 3

w1

w2

w3

w4

w5

w6

XMP Custom Panels 19

XMP Custom File Info Panels
Widget Variables

Dynamic-Value Leaf Widget Variables

These variables apply only to leaf widgets whose text alignment or values are determined
at run time.

Dynamic Text Variables

Dynamic Value Variables

For a widget’s value to change at run time, it must get the value from the XML Packet for
which this File Info dialog is being loaded. You specify this using both xmp_namespace
and xmp_path variables.

The xmp_namespace variable is optional, and defaults to xap_ns_xap. For more
information on the XMP namespaces, see the XMP—Extensible Metadata Framework
document in the XMP SDK.

Variable Description

label Type: boolean
When true, this text widget is considered a label of another widget, and is
included in calculating colon alignment for labels. It is set to true by default
for static_text widgets.
When false, the widget is not included in colon-alignment calculations.

Variable Description

xmp_namespace Type: enumeration or string

xap_ns_xap (default)
xap_ns_xap_g
xap_ns_xap_g_img
xap_ns_xap_dyn
xap_ns_xap_dyn_a
xap_ns_xap_dyn_v
xap_ns_xap_t
xap_ns_xap_t_pg
xap_ns_xap_rights
xap_ns_xap_mm
xap_ns_xap_s
xap_ns_xap_bj
xap_ns_pdf
xap_ns_dc

photoshop (string)

xap_ns_rdf
xap_ns_user
xap_ns_meta
xap_ns_aw
xap_ns_st_dimensions
xap_ns_st_resolution
xap_ns_st_track_desc
xap_ns_st_font
xap_ns_st_resource_ref
xap_ns_st_version
xap_ns_st_evebt
xap_ns_st_file_disposition
xap_ns_st_job
xap_ns_st_right

The namespace containing the XMP property whose value the widget displays.

XMP Custom File Info Panels
Widget Variables

20 XMP Custom Panels

Type-Specific Leaf Widget Variables

These variables are defined only for widgets of specific types.

popup variables

edit_text variables

xmp_path Type: string
The hard-coded path of the XMP property whose value the widget displays.
You must convert all single-quote characters (') in the xmp_path value to hat
characters ()̂ . The File Info dialog converts them back when it retrieves the
property value.

items Type: ZString
Required.
A semicolon-delimited list of the items to appear in this popup menu.
The first item in the list is selected by default.
Each item in the list is a name followed by its keyphrase in curly
brackets. This keyphrase must be a 7-bit ASCII alphanumeric value, and
must not be localized. The keyphrase is the value stored in the XMP
data if the menu item is selected.
All names and keyphrases in the list must be unique.
You can add a separator by using a dash (-) as a menu item. The
separator does not have a keyphrase. For example:
$$$/Sample/Menu/Items=First{keyOne};-;Second{keyTwo}

A menu can contain any number of items and separators.

no_checks Type: boolean
Optional. Default is false.
This option is available only on Mac OS 9 or X. When true, removes the
checkmark column. When false, the column is present and a
checkmark is drawn by the currently selected menu item.

max_chars Type: integer
Optional. Default is the maximum number of characters
allowed for a text widget by the operating system.
The maximum number of characters to be entered in the text
control. If the user exceeds the maximum, the File Info dialog
displays an alert message.

Variable Description

XMP Custom Panels 21

XMP Custom File Info Panels
Widget Variables

edit_number variables

password Type: boolean
Optional. Default is false.
When true, the text control is a password field. Characters
entered by the user are displayed as bullets (•). The cleartext is
stored in the XMP property.

restriction Type: enumeration
optional
recommended
required
not_restricted

Optional. Default is not_restricted.
● When the value is optional or not_restricted, the

dialog does not check the control’s value before closing.
● When the value is restricted or recommended, the

user must enter information in the text control before
closing the dialog. If the user clicks OK to close the dialog
and no value is present, the dialog sends an error to the
application, which can handle the error as desired.

If you restrict an edit text field, you should prefix both the label
of the field and the name of the panel with an asterisk (*). This
convention is not is not enforced, but is highly recommended.

seven_bit_ascii Type: boolean
Optional. Default is false.
When true, the text control value can have only 7-bit ASCII
characters.

v_scroller Type: boolean
Optional. Default is false.
When true, displays a vertical scroll bar when the height of
the text becomes greater than the height of the widget.

format Type: enumeration
whole
decimal
fraction
ration

Optional. Default is whole.
The numeric format in which to display the value.
Regardless of the display format, the value is stored in the original
XMP data format.

XMP Custom File Info Panels
Widget Variables

22 XMP Custom Panels

Example
edit_number (format: decimal, precision: 1,

format_addin: '$$$/format/tag=^0s',
min_value: '0.1', max_value: '250.0');

● If the user enters 2, it is displayed as 2.0s.

● If the user enters 2.25s, it is displayed as 2.3s.

● If the user enters -1, the following error message is shown and the value is displayed as
0.1s:

"A number between 0.1 and 250.0 is required. Closest value inserted."

format_addin Type: ZString
Optional. Default is no prefix or suffix.
A prefix or suffix to display with the value. For example, the
following values specify a suffix of “s” and a prefix of “f”:
format_addin: ‘$$$/format/tag=^0s’
format_addin: ‘$$$/format/tag=f^0’

max_value Type: numeric string
Optional. Default is no maximum.
A maximum value for input. This value must be specified as a string,
not an integer. For example:
max_value: '10'

min_value Type: numeric string
Optional. Default is no minimum.
A minimum value for input. This value must be specified as a string,
not an integer. For example:
min_value: '3'

precision Type: integer
Optional. Default is 1.
The number of points of precision for decimal numbers. This
applies to both the decimal and fraction formats, as
fractional values are stored as decimal. You can specify a precision
without specifying minimum or maximum values. A precision of 0
is the same as using the whole number format.
If min_value, max_value, and precision are specified using
different precisions, the largest precision is applied. For example,
when min_value = 0.01, max_value = 3.0,
precision=1, and the user enters a value of 2, the field displays
2.00. The value is also stored with the largest precision, if any
change is made.
If the user does not modify the value, the original XMP value is not
changed, regardless of how it is displayed.

XMP Custom Panels 23

XMP Custom File Info Panels
Widget Variables

static_text variables

static_text_enum variables

check_box variables

slider variables

truncate Type: boolean
Optional. Default is false.
When true, the text is truncated when it is too long to fit into the widget’s
width. This can occur with either a static string value or with a dynamic
value that is read from an XMP property.

items Type: ZString
Required.
A semicolon-delimited list of the items to appear in this static text control.
Each item is a name followed by its key phrase in curly brackets. The key
phrase must be a 7-bit ASCII alphanumeric value, and must not be localized.
This is the value stored in the XMP data. The key phrase value associated
with each item must be unique.
For example:
static_text_enum

(items: '$$$/Sample/Items=First{keyOne};Second{keyTwo}',
 xmp_namespace: photoshop, xmp_path: 'Sample');

initial_value Type: boolean
Optional. Default is false.
When true, the check box control is checked when first
displayed.

min_value Type: integer
Required.
The minimum value of the slider control.

num_tick_marks Type: integer
Optional. Default is 0.
This option is available only on Mac OS 9 or X, for a slider that
points to tick marks. Specifies the number of tick marks to
display.

XMP Custom File Info Panels
Widget Variables

24 XMP Custom Panels

mru_popup variables

cat_container_edit_text variables

pointing Type: enumeration
slider_point_none
slider_point_up
slider_point_down

Optional. Default is slider_point_none.
This option is available only on Mac OS 9 or X, for a slider that
points to tick marks. Specifies the direction of the pointer.

container_type Type: enumeration
single_value
alt_struct
bag_struct
seq_struct

Required.
The type of the XMP property bound to this menu.

mru_append Type: boolean
Optional. Default is false.
When true, appends the selected value to the XMP property.
When false, replaces the XMP property with the selected
value.

preserve_commas Type: boolean
Optional. Default is true.
When true, preserves commas in delimited text items. When
false, treats commas a delimiting characters.

XMP Custom Panels 25

XMP Custom File Info Panels
ZString

Z Str i n g

ZStrings are an Adobe convention for defining localization strings, and are used by File Info
to assist in the localization process. All strings that are displayed to the user of a custom
panel must be formatted as ZStrings.

N O T E : Even if you are not interested in localizing your custom panel definition, you
must provide ZStrings where they are required.

The ZString Format

The format of a ZString is:

$$$/context_path/property=value

$$$ The ZString marker is always required to identify a ZString and
distinguish it from any other 8-bit ASCII string.

contextpath The context path is a series of 7-bit ASCII character strings separated
by the slash (/) character. You can use any strings you wish, except
that no white space is allowed.
The context (rather than the property name and value)
distinguishes one ZString from another. For example,
$$$/a/b/OK=OK is distinct from $$$/x/y/OK=OK, although
both represent the text of an OK button.
The context path also shows the context or usage of the ZString in a
human-readable format. It is important to use a clear and
descriptive context path to identify a property, as comments are not
allowed in custom panel files.
When localization is performed, the context path helps the
localizers know the context of the value (that is, the string) which
must be translated.
It is very important that the context and path of each ZString be
unique, even among different custom panels. If the context and
path are not unique, you might end up with the wrong translation.

XMP Custom File Info Panels
Localization Dictionary Files

26 XMP Custom Panels

ZString Examples

$$$/Adobe/Photoshop/Dialogs/XYZDialog/Buttons/OK=OK
$$$/Adobe/ImageReady/Dialogs/ABCDialog/Buttons/OK=OK

Notice that the context provides much more usage information than a simple property
name and value:

$$$/OK=OK

Localization Dictionary Files

Localization is the process of translating and otherwise manipulating an interface so that it
looks as if it had been originally designed for a particular language. The File Info dialog for
which you are writing your custom panel gives you the ability to localize the strings in your
panel. The language of the dialog (and panel) is chosen by the application displaying the
dialog.

To localize you custom panel, you must provide a localization dictionary file for each
language, in the same directory as your custom panel description file. The File Info dialog
looks for all localization files appropriate to the application language. It uses the set of
localization dictionaries to find translations for static ZString values in the panel. It performs
the ZString translation when it loads each custom panel.

N O T E : Widget values set by means of XMP metadata retrieval cannot be localized. Even if
the value is a valid ZString, it is not localized; you will see the raw ZString for the
value. To localize XMP metadata, use alt-by-lang containers in your XML; see
the XMP SDK documentation for more information.

If File Info finds any localization dictionary files in the directory that contains the custom
panel definition, it loads the dictionary whose name ends with the locale-string of the
language it is looking for, followed by .dat.

property=value The last string in the context path is the property name, and is
separated from the value by an equal sign (=). The string following
the separator (=) is the UI string to use for this ZString.
Everything up to the value is stripped off during the localization
process. The value is the string displayed to the user, and this is the
string that is translated according using any localization dictionary
files that you provide. See “Localization Dictionary Files” on page 26.
The value can contain special characters indicated by escape
sequences, as shown in ZString Escape Sequences. It cannot contain
a # character, which is always interpretted as an escape character.
The value can contain an ampersand (&) character to indicate an
accelerator key on Windows. Mac OS and Unix systems ignore this
character.

XMP Custom Panels 27

XMP Custom File Info Panels
Localization Dictionary Files

For example, for your custom panel deliverables you might distribute the following files:

● MyCustomPanelFile.xmp (the custom panel definition file)

● MyZStringDict_en-us.dat (United States English localization dictionary file)

● MyZStringDict_fr-fr.dat (French localization dictionary file)

● MyZStringDict_en-uk.dat (United Kingdom English localization dictionary file)

● MyZStringDict_ja-jp.dat (Japanese localization dictionary file)

These localization dictionary files have no internal correlation to the related custom panel
definition, and the part of the file name before the language code can be anything you
choose. You can provide any number of dictionaries for each language.

The File Info dialog loads only the dictionary file or files that correspond to the language of
the application. For American English, for example, it loads any dictionary ending in “en-
us.dat”; for French, any one ending in “fr-fr.dat”, and so on.

If there are no localization dictionary files for a custom panel, or if none is found to match
the application language, the File Info dialog displays the UI string found in the original
ZString.

Localization Dictionary File Format

A localization dictionary file is a collection of ZStrings whose final string values are in the
destination language (see “ZString” on page 25). The file must be a UTF-16 (double-byte)
file with a UTF-16 byte-order marker (BOM) as the first character.

The only things allowed on a line (after the first character) are ZStrings; no newline
characters or comments are allowed. The ZStings in this file must all be enclosed with
double quotes.

The following text editor are recommended for creating these files:

● On Mac OS 9 you must use a third-party application which supports Unicode.

● On Mac OS X simply use TextEdit and make sure you save the file type as “Unicode”
(versus UTF-8 or RTF).

● On Windows use Notepad, and be sure to save the file as type “Unicode.”

N O T E : TextEdit and Notepad both have menu items that say Unicode and UTF-8 , rather
than UTF-16 and UTF-8. You must use UTF-16, which corresponds to the Unicode
menu item.

The first two bytes of the file must be a byte order marker (BOM):

● 0xFEFF: MSB-first, or big-endian byte order

● 0xFFFE: LSB-first, or little-endian byte order

The rest of the file is UTF-16 formatted text with the byte order in accordance to the byte
order marker.

XMP Custom File Info Panels
Troubleshooting a Custom Panel

28 XMP Custom Panels

N O T E : For programs like TextEdit on the Macintosh and Notepad on Windows, you do not
have to enter the BOM (byte order marker) manually; saving the file as a UTF-16
Unicode file format implicitly adds it. The BOM is discussed here to assist those who
do not have a Unicode-aware text editing utility available to them.

Matching ZStrings for Localization

The File Info dialog searches for a ZString translation in all localization dictionaries that
have been loaded for the application’s language, not just in the dictionary for your custom
panel. More than one localization dictionary can contain a particular ZString, or a dictionary
can contain the same ZString more than once. If the File Info dialog finds more than one
translation for a ZString in any combination of dictionaries, the last one found is used for
the displayed value.

ZStrings in your panel can have the same property name and value, as long as they are
distinguished by the context. However, another panel might use the same property names,
and even define the same contexts. It is particularly important to distinguish contexts
sufficiently, as the same property name might be used by another custom panel, and found
in another localization dictionary. If the context is not unique, there is no guarantee that
the dictionary associated with your custom panel is the last loaded, and that your
translation is therefore displayed.

Troubleshooting a Custom Panel

If your custom panel does not appear or does not behave as expected, here are a few issues
to consider:

● Check that the localization and custom panel description files are in the proper
directory locations.

● Check the file formats. Make sure the panel description file is 7-bit ASCII (single-byte)
and the ZString dictionary files are double-byte with a Unicode BOM as the first two
bytes of the file.

● Check whether two or more widgets are editing the same XMP property.

● Check the xmp_path and xmp_namespace property values. Try removing numbers
and other non-alphanumeric characters from your namespaces and paths to get the
values to be retained. Some characters invalidate these paths.

● Check the syntax of the custom panel description. No automatic syntax checking is
provided.

XMP Custom Panels 29

XMP Custom File Info Panels
Additional Documentation

Additional Documentation

For more information about the XMP format and syntax, see the following documents,
which are available as part of the XMP SDK:

● XMP Overview: an overview of how XMP works and how to use it.

● XMP—Extensible Metadata Framework: a complete reference for the XMP specification.

XMP Custom File Info Panels
Additional Documentation

30 XMP Custom Panels

XMP Custom Panels 31

Sample Custom Panels

Overview of Samples

These sample Custom Panel description files illustrate how to achieve various effects.

● Example 1: All Widgets

● Example 2: Document Description Metadata

Check the SDK installation for these and other samples.

Sample Custom Panel Description Files

Example 1: All Widgets

This example contains one of each kind of widget, illustrating their variable assignments.
The code can be found in the file CustomPanel_allWidgets.txt.

<?xml version="1.0">
<!DOCTYPE panel SYSTEM "http://ns.adobe.com/custompanels/1.0">
<panel title="$$$/CustomPanels/Acro/PanelName=Test All Widgets"

version="1" type="custom_panel">
group(placement: place_column, spacing: gLargeSpace,

 horizontal: align_fill, vertical: align_top)
{

cluster(name:
'$$$/CustomPanels/Widgets/widgetName=check box, slider, progress bar',
placement: place_column, spacing: gSpace, margin_height:10,
horizontal: align_center, vertical: align_top, width : 500, height : 100,
child_vertical: align_top)

{
check_box(name:'$$$/CustomPanels/Widgets/opt1=Check box',

initial_value:true, margin_width : 10);
slider(name:'$$$/CustomPanels/Widgets/opt2=Slider',

horizontal: align_fill, height : 10, default_value:22, min_value:0,
max_value:100, num_tick_marks:6, xmp_path: 'SliderValue',
pointing:slider_point_right);

}
cluster(name: '$$$/CustomPanels/Widgets/widgetName=static text,

 edit text, cat_container text',placement: place_column, spacing: gSpace,
 margin_height:10, horizontal: align_center, width : 400, height : 100,
 child_vertical: align_bottom)

{

Sample Custom Panels
Sample Custom Panel Description Files

32 XMP Custom Panels

static_text(name: '$$$/CustomPanels/Widgets/static_text=Static text:',
 font: font_small_bold_right, vertical: align_top);

edit_text(horizontal: align_fill, font: font_small, xmp_path: 'Title',
vertical: align_top);

cat_container_edit_text(horizontal: align_fill, height: 54,
xmp_path: 'Keywords', v_scroller: true);

}

cluster (name:
'$$$/CustomPanels/Widgets/widgetName=popup,most-recently-used popup,separator',

placement: place_column, spacing: gSpace, horizontal: align_center,
margin_height:10, width : 300, height : 100, child_vertical: align_center)

{
mru_popup(xmp_path: 'Authors', container_type: seq_struct, no_check: true,

vertical: align_top, mru_append: true);
separator(horizontal: align_fill);
popup(items: '$$$/CustomPanels/Widgets/Language/PopupItems= Popup 1{1};

 Popup 2{2}; Popup 3{3}',
xmp_path: 'foo');

}
}
</panel>

Example 2: Document Description Metadata

This example defines a panel that shows the pre-defined Description namespace. The
panel contains a set of controls bound to all of the document metadata properties in that
namespace. The code can be found in the file Description.txt.

<?xml version="1.0">
<!DOCTYPE panel SYSTEM "http://ns.adobe.com/custompanels/1.0">
<panel title="$$$/AWS/FileInfoLib/Panels/Description/PanelName=Description"

version="1" type="custom_panel">

group(placement: place_column, spacing: gSpace, horizontal: align_fill,
vertical: align_top)

{
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/Title=&Document Title:',
vertical: align_center, font: font_big_right);

edit_text(horizontal: align_fill, xmp_path: 'Title',
container_type: alt_struct);

mru_popup(xmp_path: 'Title', container_type: alt_struct,
no_check: true, vertical: align_top);

}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)

XMP Custom Panels 33

Sample Custom Panels
Sample Custom Panel Description Files

{
static_text(name: '$$$/AWS/FileInfoLib/Panels/Description/Author=&Author:',

vertical: align_center, font: font_big_right);
cat_container_edit_text(horizontal: align_fill, xmp_path: 'Authors',

container_type: seq_struct, preserve_commas: true);
mru_popup(xmp_path: 'Authors', container_type: seq_struct,

no_check: true, vertical: align_top, mru_append: true);
}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/Description=De&scription:',
vertical: align_top, font: font_big_right);

edit_text(horizontal: align_fill, height: 54,
xmp_path: 'Description', container_type: alt_struct,
v_scroller: true);

mru_popup(xmp_path: 'Description', container_type: alt_struct,
no_check: true, vertical: align_top);

}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/DescriptionWriter=

D&escription Writer:',
vertical: align_center, font: font_big_right);

edit_text(horizontal: align_fill, xmp_namespace: photoshop,
xmp_path: 'CaptionWriter');

mru_popup(xmp_namespace: photoshop, xmp_path: 'CaptionWriter',
no_check: true, vertical: align_top);

}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/Keywords=Ke&ywords:',
vertical: align_top, vertical: align_top, font: font_big_right);

group(placement: place_column, spacing: gSpace, horizontal: align_fill)
{

cat_container_edit_text(horizontal: align_fill, height: 54,
xmp_path: 'Keywords', container_type: bag_struct,
v_scroller: true);

group(placement: place_row, spacing: gSpace, horizontal: align_fill)
{

icon(builtin_icon:builtin_icon_alert, width: 20, height: 20);
static_text(name:

'$$$/AWS/FileInfoLib/Panels/Description/KeywordsHint=
Commas can be used to separate keywords',

vertical: align_center, horizontal: align_fill);
}

Sample Custom Panels
Sample Custom Panel Description Files

34 XMP Custom Panels

}
mru_popup(xmp_path: 'Keywords', container_type: bag_struct,

no_check: true, vertical: align_top, mru_append: true);
}

separator(horizontal: align_fill);

group(placement: place_row, spacing: gSpace, horizontal: align_fill,
reverse: rtl_aware)

{
static_text(name:

'$$$/AWS/FileInfoLib/Panels/Description/CopyrightState=
&Copyright Status:', vertical: align_center, font: font_big_right);
popup(items:

'$$$/AWS/FileInfoLib/Panels/Description/CopyrightPopupItems=
Unknown{};Copyrighted{True};Public Domain{False}',

xmp_namespace: xap_ns_xap_rights, xmp_path: 'Marked');
}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
 '$$$/AWS/FileInfoLib/Panels/Description/CopyrightNotice=

C&opyright Notice:', vertical: align_top, font: font_big_right);
edit_text(horizontal: align_fill, height: 54,

xmp_namespace: xap_ns_xap_rights, xmp_path: 'Copyright',
container_type: alt_struct, v_scroller: true);

mru_popup(xmp_namespace: xap_ns_xap_rights,
xmp_path: 'Copyright', container_type: alt_struct,
no_check: true, vertical: align_top);

}

group(placement: place_column, spacing: gSpace, horizontal: align_fill,
vertical: align_top)

{
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/CopyrightInfoURL=
Copyright Info URL:', vertical: align_top, font: font_big_right);

group(placement: place_column, spacing: gSpace,
horizontal: align_fill)

{
edit_text(horizontal: align_fill,

xmp_namespace: xap_ns_xap_rights,
xmp_path: 'WebStatement');

button(name: '$$$/AWS/FileInfoLib/Panels/Description/GoToURL=
 Go To URL...', vertical: align_bottom,
horizontal: align_right, label: false);

}

XMP Custom Panels 35

Sample Custom Panels
Sample Custom Panel Description Files

mru_popup(xmp_namespace: xap_ns_xap_rights,
xmp_path: 'WebStatement', no_check: true,
vertical: align_top, visible: false);

}
}

separator(horizontal: align_fill);

group(placement: place_row, spacing: gSpace, horizontal: align_fill)
{

group(placement: place_row, spacing: gSpace, horizontal: align_fill,
reverse: rtl_aware)

{
group(placement: place_column, spacing: 5)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/DateCreated=Created:',
label: false, horizontal: align_right, vertical: align_top,
font: font_big_right);

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/DateModified=Modified:',
label: false, horizontal: align_right, vertical: align_bottom,
font: font_big_right);

}
group(placement: place_column, spacing: 5, horizontal: align_fill)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/IntentionallyBlank=',
xmp_path: 'CreateDate', horizontal: align_fill,
vertical: align_top, truncate: true);

static_text(name:
'$$$/AWS/FileInfoLib/Panels/IntentionallyBlank=',
xmp_path: 'ModifyDate', horizontal: align_fill,
vertical: align_bottom, truncate: true);

}
}
group(placement: place_row, spacing: gSpace, horizontal: align_fill,

reverse: rtl_aware)
{

group(placement: place_column, spacing: 5)
{

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/CreatorApplication=
 Application:', label: false, horizontal: align_right,
vertical: align_top, font: font_big_right);

static_text(name:
'$$$/AWS/FileInfoLib/Panels/Description/Format=Format:',
label: false, horizontal: align_right, vertical: align_bottom,
font: font_big_right);

}
group(placement: place_column, spacing: 5, horizontal: align_fill)

Sample Custom Panels
Sample Custom Panel Description Files

36 XMP Custom Panels

{
static_text(name: '$$$/AWS/FileInfoLib/Panels/IntentionallyBlank=',

xmp_path: 'CreatorTool', horizontal: align_fill,
vertical: align_top, truncate: true); <<truncate not

documented>>
static_text(name: '$$$/AWS/FileInfoLib/Panels/IntentionallyBlank=',

xmp_path: 'Format', horizontal: align_fill,
vertical: align_bottom, truncate: true);

}
}

}
}
</panel>

XMP Custom Panels 37

ZString Escape Sequences

Strings used in ZString values must use escape sequences to indicate certain characters.
The following tables summarize the required escape sequences.

Backslash Escape Sequences

To include the backslash character itself in a string, use the sequence “\\”.

Hat Escape Sequences

To include the hat character itself in a string, use the sequence “^^”.

Sequence Glyph Unicode Unicode name Alternate Unicode names

\ "" U+0022 QUOTATION MARK APL quote

\n [LF] U+000A LINE FEED

\r [CR] U+000D CARRIAGE RETURN

\t [HT] U+0009 HORIZONTAL
TABULATION

\b [BS] U+0008 BACK SPACE

Sequence Glyph Unicode Unicode name Alternate Unicode names

^Q " U+0022 QUOTATION MARK APL quote

^[“ U+201C LEFT DOUBLE QUOTATION
MARK

DOUBLE TURNED COMMA QUOTATION
MARK

^] ” U+201D RIGHT DOUBLE
QUOTATION MARK

DOUBLE COMMA QUOTATOIN MARK

^{ ‘ U+2018 LEFT SINGLE QUOTATION
MARK

SINGLE TURNED COMMA QUOTATION
MARK

^} ’ U+2019 RIGHT SINGLE QUOTATION
MARK

SINGLE COMMA QUOTATION MARK

^C © U+00A9 COPYRIGHT SIGN

ZString Escape Sequences

38 XMP Custom Panels

ISO-based Escape Sequences

^R ® U+00AE REGISTERED SIGN REGISTERED TRADE MARK SIGN

^T ™ U+2122 TRADEMARK SIGN

^D ° U+00B0 DEGREE SIGN

^B • U+2022 BULLET black small circle

^# ? U+2318 PLACE OF INTEREST SIGN COMMAND KEY

^! ¬ U+00AC NOT SIGN

^I ? U+2206 INCREMENT Laplace operator forward difference

^S ? U+2211 N-ARY SUMMATION summation sign

Sequence Glyph Unicode Description

#{endl} *1 *1 Platform dependent end-of-line
This is translated into CR+LF on Windows, CR on
MacOS Carbon and LF on Unix.

#{tab} [HT] U+0009 horizontal tabulation

#{cr} [CR] U+000D carriage return

#{lf } [LF] U+000A line feed

#{nbsp} U+00A0 no-break space = non-breaking space

#{iexcl} ¡ U+00A1 inverted exclamation mark

#{cent} ¢ U+00A2 cent sign

#{pound} £ U+00A3 pound sign

#{curren} ¤ U+00A4 currency sign

#{yen} ¥ U+00A5 yen sign = yuan sign

#{brvbar} ¦ U+00A6 broken bar = broken vertical bar

#{sect} § U+00A7 section sign

#{uml} ¨ U+00A8 diaeresis = spacing diaeresis

#{copy} © U+00A9 copyright sign

#{ordf } ª U+00AA feminine ordinal indicator

Sequence Glyph Unicode Unicode name Alternate Unicode names

XMP Custom Panels 39

ZString Escape Sequences

#{laquo} « U+00AB left-pointing double angle quotation mark

#{not} ¬ U+00AC not sign

#{shy} - U+00AD soft hyphen = discretionary hyphen

#{reg} ® U+00AE registered sign = registered trade mark sign

#{macr} ¯ U+00AF macron = spacing macron = overline

#{deg} ° U+00B0 degree sign

#{plusmn} ± U+00B1 plus-minus sign = plus-or-minus sign

#{sup2} ² U+00B2 superscript two = superscript digit two

#{sup3} ³ U+00B3 superscript three = superscript digit three

#{acute} ´ U+00B4 acute accent = spacing acute

#{micro} µ U+00B5 micro sign

#{para} ¶ U+00B6 pilcrow sign = paragraph sign

#{middot} · U+00B7 middle dot = Georgian comma

#{cedil} ¸ U+00B8 cedilla = spacing cedilla

#{sup1} ¹ U+00B9 superscript one = superscript digit one

#{ordm} º U+00BA masculine ordinal indicator

#{raquo} » U+00BB right-pointing double angle quotation mark

#{frac14} ¼ U+00BC vulgar fraction one quarter

#{frac12} ½ U+00BD vulgar fraction one half

#{frac34} ¾ U+00BE vulgar fraction three quarters

#{iquest} ¿ U+00BF inverted question mark

#{Agrave} À U+00C0 latin capital letter A with grave = latin capital letter A
grave

#{Aacute} Á U+00C1 latin capital letter A with acute

#{Acirc} Â U+00C2 latin capital letter A with circumflex

#{Atilde} Ã U+00C3 latin capital letter A with tilde

#{Auml} Ä U+00C4 latin capital letter A with diaeresis

#{Aring} Å U+00C5 latin capital letter A with ring above = latin capital
letter A ring

#{AElig} Æ U+00C6 latin capital letter AE = latin capital ligature AE

Sequence Glyph Unicode Description

ZString Escape Sequences

40 XMP Custom Panels

#{Ccedil} Ç U+00C7 latin capital letter C with cedilla

#{Egrave} È U+00C8 latin capital letter E with grave

#{Eacute} É U+00C9 latin capital letter E with acute

#{Ecirc} Ê U+00CA latin capital letter E with circumflex

#{Euml} Ë U+00CB latin capital letter E with diaeresis

#{Igrave} Ì U+00CC latin capital letter I with grave

#{Iacute} Í U+00CD latin capital letter I with acute

#{Icirc} Î U+00CE latin capital letter I with circumflex

#{Iuml} Ï U+00CF latin capital letter I with diaeresis

#{ETH} Ð U+00D0 latin capital letter ETH

#{Ntilde} Ñ U+00D1 latin capital letter N with tilde

#{Ograve} Ò U+00D2 latin capital letter O with grave

#{Oacute} Ó U+00D3 latin capital letter O with acute

#{Ocirc} Ô U+00D4 latin capital letter O with circumflex

#{Otilde} Õ U+00D5 latin capital letter O with tilde

#{Ouml} Ö U+00D6 latin capital letter O with diaeresis

#{times} × U+00D7 multiplication sign

#{Oslash} Ø U+00D8 latin capital letter O with stroke = latin capital letter
O slash

#{Ugrave} Ù U+00D9 latin capital letter U with grave

#{Uacute} Ú U+00DA latin capital letter U with acute

#{Ucirc} Û U+00DB latin capital letter U with circumflex

#{Uuml} Ü U+00DC latin capital letter U with diaeresis

#{Yacute} Ý U+00DD latin capital letter Y with acute

#{THORN} Þ U+00DE latin capital letter THORN

#{szlig} ß U+00DF latin small letter sharp s = ess-zed

#{agrave} à U+00E0 latin small letter a with grave = latin small letter a
grave

#{aacute} á U+00E1 latin small letter a with acute

#{acirc} â U+00E2 latin small letter a with circumflex

Sequence Glyph Unicode Description

XMP Custom Panels 41

ZString Escape Sequences

#{atilde} ã U+00E3 latin small letter a with tilde

#{auml} ä U+00E4 latin small letter a with diaeresis

#{aring} å U+00E5 latin small letter a with ring above = latin small letter
a ring

#{aelig} æ U+00E6 latin small letter ae = latin small ligature ae

#{ccedil} ç U+00E7 latin small letter c with cedilla

#{egrave} è U+00E8 latin small letter e with grave

#{eacute} é U+00E9 latin small letter e with acute

#{ecirc} ê U+00EA latin small letter e with circumflex

#{euml} ë U+00EB latin small letter e with diaeresis

#{igrave} ì U+00EC latin small letter i with grave

#{iacute} í U+00ED latin small letter i with acute

#{icirc} î U+00EE latin small letter i with circumflex

#{iuml} ï U+00EF latin small letter i with diaeresis

#{eth} ð U+00F0 latin small letter eth

#{ntilde} ñ U+00F1 latin small letter n with tilde

#{ograve} ò U+00F2 latin small letter o with grave

#{oacute} ó U+00F3 latin small letter o with acute

#{ocirc} ô U+00F4 latin small letter o with circumflex

#{otilde} õ U+00F5 latin small letter o with tilde

#{ouml} ö U+00F6 latin small letter o with diaeresis

#{divide} ÷ U+00F7 division sign

#{oslash} ø U+00F8 latin small letter o with stroke, = latin small letter o
slash

#{ugrave} ù U+00F9 latin small letter u with grave

#{uacute} ú U+00FA latin small letter u with acute

#{ucirc} û U+00FB latin small letter u with circumflex

#{uuml} ü U+00FC latin small letter u with diaeresis

#{yacute} ý U+00FD latin small letter y with acute

#{thorn} þ U+00FE latin small letter thorn

Sequence Glyph Unicode Description

ZString Escape Sequences

42 XMP Custom Panels

#{yuml} ÿ U+00FF latin small letter y with diaeresis

#{quot} "U+0022 quotation mark = APL quote

#{amp} & U+0026 ampersand

#{lt} < U+003C less-than sign

#{gt} > U+003E greater-than sign

#{OElig} Œ U+0152 latin capital ligature OE

#{oelig} œ U+0153 latin small ligature oe

#{Scaron} Š U+0160 latin capital letter S with caron

#{scaron} š U+0161 latin small letter s with caron

#{Yuml} Ÿ U+0178 latin capital letter Y with diaeresis

#{circ} ˆ U+02C6 modifier letter circumflex accent

#{tilde} ˜ U+02DC small tilde

#{ensp} U+2002 en space

#{emsp} U+2003 em space

#{thinsp} ? U+2009 thin space

#{zwnj} ? U+200C zero width non-joiner

#{zwj} ? U+200D zero width joiner

#{lrm} ? U+200E left-to-right mark

#{rlm} ? U+200F right-to-left mark

#{ndash} – U+2013 en dash

#{mdash} — U+2014 em dash

#{lsquo} ‘ U+2018 left single quotation mark

#{rsquo} ’ U+2019 right single quotation mark

#{sbquo} ‚ U+201A single low-9 quotation mark

#{ldquo} “ U+201C left double quotation mark

#{rdquo} ” U+201D right double quotation mark

#{bdquo} „ U+201E double low-9 quotation mark

#{dagger} † U+2020 dagger

#{Dagger} ‡ U+2021 double dagger

Sequence Glyph Unicode Description

XMP Custom Panels 43

ZString Escape Sequences

#{permil} ‰ U+2030 per mille sign

#{lsaquo} ‹ U+2039 single left-pointing angle quotation mark

#{rsaquo} › U+203A single right-pointing angle quotation mark

#{euro} € U+20AC euro sign

Sequence Glyph Unicode Description

ZString Escape Sequences

44 XMP Custom Panels

	XMP Custom Panels
	Contents
	XMP Custom File Info Panels
	Introduction
	Custom Panel Files
	Custom Panel Description File Format
	File Locations
	Custom Panel Description File Contents

	Custom Panel Widget Types
	Container Widgets
	Leaf Widgets

	Widget Variables
	Widget Variable Key-Value Pairs
	Scoping for Linked Variable Values
	General Widget Variables
	Container Widget Variables
	Dynamic-Value Leaf Widget Variables
	Type-Specific Leaf Widget Variables

	ZString
	The ZString Format
	ZString Examples

	Localization Dictionary Files
	Localization Dictionary File Format
	Matching ZStrings for Localization

	Troubleshooting a Custom Panel
	Additional Documentation

	Sample Custom Panels
	Overview of Samples
	Sample Custom Panel Description Files
	Example 1: All Widgets
	Example 2: Document Description Metadata

	ZString Escape Sequences
	Backslash Escape Sequences
	Hat Escape Sequences
	ISO-based Escape Sequences

